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The mutagenicity, metabolism, DNA adduction and induction of unscheduled DNA synthesis (UDS) of 1-nitropyrene and 1,8-dinitropyrene were
investigated in the human hepatoma cell line HepG2. Previous results had demonstrated that 1-nitropyrene was both mutagenic at the hgprt locus
and induced UDS in these cells. In the present study, we find that the dinitropyrenes, although highly mutagenic in Salmonella typhimurium, are not
mutagenic and do not induce UDS in the HepG2. Although the rate of 1,8-dinitropyrene nitroreduction was less than that of 1-nitropyrene nitroreduction,
this did not explain the lack of mutagenicity and UDS induction by the dinitropyrenes. Therefore, it is proposed that the arylhydroxylamine O-esterificase
is not expressed in these cells. Since cytochrome P450-mediated C-oxidation is the predominant metabolic pathway in vivo, we sought to deter-
mine if an increase in the ratio of cytochrome P450-mediated C-oxidation over nitroreduction would result in increased or decreased DNA adducts in
the HepG2. The administration of 2.5 pM 3-methylcholanthrene to the HepG2 increased the ratio of C-oxidation/nitroreduction from 2.8 ± 1.9 to 50.4
± 46.1. This was accompanied by a decrease in the C8-guanyl adduct of 1-nitropyrene (via nitroreduction) from 18.7 ± 7.0 to 4.8 ± 1.7 fmoles/pg
DNA, without any further increase in other 1-nitropyrene DNA adducts. These results suggest that the cytochrome P450-mediated metabolism of 1-
nitropyrene to epoxides, phenols, and dihydrodiols is not an activation pathway in the HepG2 cells, and may explain the weak carcinogenicity of 1-
nitropyrene in vivo, where cytochrome P450-mediated C-oxidation predominates. - Environ Health Perspect 102(Suppl 6):195-200 (1994)
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Introduction
The method for assessing the human risk
of a chemical is to use the in vivo and in
vitro data on the mutagenicity and tumori-
genicity of the chemical, and to determine
the likelihood for human genotoxicity or

adverse health effects. Risk assessment eval-
uations take into consideration in vitro data
from both prokaryotic and eukaryotic cell
studies, as well as in vivo toxicity studies
from several species. It would be most

advantageous to study the metabolism and
genotoxicity of chemicals in vitro in human
cells that metabolically resemble the cell of
interest in humans. While studying the
metabolism and genotoxicity of chemicals
in vitro ignores the interaction of chemicals
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and metabolites between cells or organs
(e.g. enterohepatic circulation), it may pre-
sent a simulated environment in which to
study the generation of reactive metabolites
within a human cell.

The human hepatoma cell holds good
promise as an in vitro candidate for studies
on xenobiotic metabolism. The isolation of
primary human hepatocytes is restricted by
a lack of availability of tissue, and poses the
additional problem of interindividual varia-
tion. Several hepatoma cell lines have been
isolated, with the most promising being the
HepG2 cell line. This cell line was derived
from a primary hepatoblastoma isolated
from an 1 1-year-old Argentinean male (1).
These cells retain many characteristic
enzyme pathways of hepatocytes (1-15),
and have been cultured successfully for
more than 100 passages.

The HepG2 has been shown by several
groups to possess the enzymes necessary for
the activation of many chemicals. For
instance, Diamond and coworkers (16)
demonstrated that when X-ray-irradiated
HepG2 was cocultured for 48 hr with
Chinese hamster V79 lung cells and
1 pg/ml 15,16-dihydro-11-methylcyclo-
penta[a]phenanthrene-17-one, 7.8 muta-

tions per I05 clonable cells were noted in
the V79 cells. Dearfield et al. (17)
demonstrated that the HepG2 was capable
of activating cyclophosphamide to induce
sister chromatid exchanges (SCEs), and
demonstrated that the content of
cytochrome P450 is very low in the
HepG2 cells (a phenomenon that has been
reported by several laboratories). Other
compounds that have been reported to be
activated by the HepG2 include benzo-
[a] pyrene (18,19), 7,1 2-dimethylbenz-
[a]anthracene (20,21), aflatoxin B1,
(22,23), several N-nitroso compounds
(24), benzidine (23,25), acetylbenzidine
(23), 2-aminofluorene (23), 2-amino-
anthracene (23), dibenz[a,h]anthracene, 7-
methyldibenz[a, h] anthracene, 7,1 2-di-
methyldibenz[a,h] anthracene, 3-methyl-
cholanthrene, 3,6-dimethylcholanthrene,
1 -methylbenzo[e] pyrene, 7,1 2-dimethyl-
benz[a]anthracene, and 1-,4-, or 10-fluoro-
7,12-dimethylbenz[a]anthracene (21).

The metabolism of 1-nitropyrene has
been shown to involve both cytochrome
P450-mediated C-oxidation (26-30) and
nitroreduction (31-35). The C-oxidation
of 1-nitropyrene by cytochrome P450 can
result in the formation of two arene K-
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Figure 1. Scheme for the metabolism of 1-nitropyrene.

region oxides, 1-nitropyrene-4,5-oxide and
1-nitropyrene-9,10-oxide (Figure 1, struc-
tures 1,2). The K-region oxides are muta-
genic in Salmonella typhimurium either
with or without exogenous activating
enzymes (35,36). The K-region oxides can
be hydrolyzed by epoxide hydrolase to the
corresponding K-region trans-dihydrodiols
(structures 3,4), or can rearrange to form
four K-region phenols (structures 5-8).
Alternatively, cytochrome P450 can cat-
alyze the direct formation of three phenols
(structures 9-11). Each of these phenols
has been reported to have differing muta-
genicities in S. typhimurium, presumably
through nitroreduction to hydroxylamine
derivatives (37,38). Not shown in Figure 1
are the conjugation of these phenols to sul-
fate and glucuronide derivatives, or the
hydrolysis of the epoxides via glutathione
and glutathione transferases.

In S. typhimurium, 1-nitropyrene is
mutagenic through nitroreduction to the
corresponding nitroso (structure 12) then
the hydroxylamino (structure 13) deriva-
tive, which has been shown to form a C8-
guanyl adduct (32). This adduct also is
responsible for the mutagenicity of 1-
nitropyrene in CHO cells (34), and cul-
tured human diploid fibroblasts (39-40).
We demonstrated earlier that HepG2

activates 1-nitropyrene to a mutagenic
metabolite (41), inducing 76 mutants per
105 clonable cells at 4 pM 1-nitropyrene.

However, the pathways responsible for this
activation were not known. Moreover, both
cytochrome P450-mediated C-oxidized
metabolites and nitroreduced metabolites
(1-aminopyrene) were detected (41).
Therefore, we were unable to deduce the
pathway or the DNA adduct responsible for
the mutagenesis of 1-nitropyrene in HepG2.

The C-oxidative metabolism of 1-
nitropyrene in different species is catalyzed
by different cytochrome P450s [P450 2C3
in rabbit (28); P4503A4 in human (30);
and P4502B1 and P4502C in rat
(Howard, unpublished)]. Additionally, the
nitroreduction of 1-nitropyrene is catalyzed
by several enzymes in bacteria (42,43), and
several enzymes, including NADPH-
dependent cytochrome P450 reductase,
DT-diaphorase, aldehyde oxidase, xanthine
oxidase, and lipoyl dehydrogenase, in
mammalian cells (44-47).

Therefore we sought to determine
whether 1,8-dinitropyrene, like 1-nitropy-
rene, was mutagenic in HepG2 cells, and
to describe the pathway involved in the
metabolic activation of 1-nitropyrene and
1,8-dinitropyrene in HepG2.

Materials and Methods
Culture ofHepG2 Cells
HepG2 cells were obtained from L.
Diamond (Wistar Institute, Philadelphia,
PA), and from the American Type Culture

Collection (Rockville, MD). The cells were
grown essentially as described in Eddy et al.
(41) at 37°C in 5% CO2 in humidified air
on 100 mm tissue culture plates in
Minimal Essential Medium (MEM;
GIBCO) with 10% heat-inactivated
(56°C, 30 min) fetal bovine serum (hi-
FBS; ICN Biomedicals), and 10 units/ml
penicillin and 10 g/ml streptamycin sulfate
(GIBCO). The cells were subcultured (1:3)
every 3 to 4 days using trypsin (GIBCO).

Mutagenesis and Unscheduled DNA
Synthesis in HepG2 Cells
The mutagenesis of the chemicals by selec-
tion of mutations at the hgprt locus and the
quantitation of induction of unscheduled
DNA synthesis (UDS) were essentially as
described in Eddy et al. (41).

Mletabolism of [3H] 1-nitropyrene and
[3H] 1,8-dinitropyrene
For the metabolism studies, HepG2 cells
were plated at 1.5 x 10 cells/100 mm cul-
ture plates and incubated overnight with
MEM + 10% hi-FBS. Immediately prior to
adding the radiolabeled compounds, the
medium was changed to MEM + 2% hi-
FBS. Either 4 pM [4,5,9,10-3H] 1-nitropy-
rene (1 Ci/mmole; radiolabel purity >98%;
Chemsyn, Inc., Lenexa, KS) or 4 pM
[4,5,9,10-3H] 1,8-dinitropyrene (2.2
Ci/mmoles; radiolabel purity >99%;
Chemsyn, Inc.) were added to the media
and incubated for up to 24 hr. The metab-
olism of the compounds was terminated by
decanting and cooling the media on ice,
removal of the cells with trypsin, and
extraction of the parent compounds and
metabolites with chloroform:methanol
(2:1) followed by chloroform. Additionally,
cells and media were incubated at 370C
overnight in the presence of 0-glu-
curonidase (Sigma) or arylsulfatase
(Sigma), followed by extraction with chlo-
roform.

The analysis of the metabolites of
[3H] 1-nitropyrene and [3H] 1,8-dinitro-
pyrene was essentially as described for 1-
nitropyrene (30) using HPLC (Varian
Instr., Walnut Creek, CA) and reverse-
phase columns (Waters Assoc., Milford,
MA). Nonradiolabeled standards were rou-
tinely coinjected to verify retention times
of the metabolites. The conversion of the
parent compound was quantified using a
flow-through scintillation counter (Flo-
One, Radiomatic Instruments). Represen-
tative chromatograms of [3H] 1 -nitropyrene
and [3H] 1,8-dinitropyrene metabolism are
shown in Figure 2. Baseline separation of
the major metabolites of both [3H] 1-
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Table 1. Mutagenicity of 1-nitropyrene and dinitropy-
renes at the hgprt locus in HepG2 cells.

Mutations per 105
Chemicala pM clonable cells

none 6.3
1-nitropyrene 10 96.1
MNNG 1.0 92.6
1,3-dinitropyrene 3.4 23.8
1,3-dinitropyrene 8.6 28.3
1,3-dinitropyrene 17 18.9
1,6-dinitropyrene 3.4 9.9
1,6-dinitropyrene 8.6 2.1
1,6-dinitropyrene 17 0.8
1,8-dinitropyrene 3.4 2.2
1,8-dinitropyrene 8.6 0
1,8-dinitropyrene 17 0

aN-methyl-N'-nitro-N-nitrosoguanidine. The com-
0 20 40 pounds were added to HepG2 and mutagenicity at the

minutes hgprt gene was determined as described in the text
using 6-thioguanine.

Figure 2. Representative chromatograms of the HPLC
analysis of the HepG2 metabolism of [3HI1-nitropyrene
(A) and [3H]1,8-dinitropyrene (B).The following
metabolites or parent compounds were determined by
cochromatography with non-radiolabeled compounds:
(a) 1-nitropyrene-4,5-dihydrodiol; (b) 1-aminopyrene; (c)
1-nitropyren-6-ol and 1-nitropyren-8-ol; (d) 1-
nitropyren-3-ol; (e) 1-nitropyrene; (f) 1-nitrosopyrene;
g) 1 -amino-8-nitropyrene; (h) 1,8-dinitropyrene.

nitropyrene and [3H] 1 ,8-dinitropyrene
were achieved.

32P-Posdabeling ofDNA from HepG2
DNA adducts were assayed by 32P-post-
labeling on DNA by the n-butanol enrich-
ment and contact transfer procedures as
indicated in Smith et al. (48). The adducts
were quantified by comparison to DNA
standards that were modified to a known
extent with 1 -nitropyrene.

Results and Discussion
While 1-nitropyrene has been shown to be
a weak carcinogen in rodent bioassays, 1,6-
and 1,8-dinitropyrene have been shown to
possess very high carcinogenic potential
(49-51). This correlates with the muta-
genicity of 1-nitropyrene and 1,6- and 1,8-
dinitropyrene in S. typhimurium, where the
dinitropyrenes are 1000- to 2000-fold
more mutagenic in S. typhimurium strain
TA98.

In Table I we show the results of the
incubation of 1-nitropyrene and 1,8-dini-
tropyrene with HepG2, and the subse-
quent selection for mutations at the hgprt
locus. The induction of 96.1 mutants per
105 clonable cells at 10 pM 1-nitropyrene
is slightly lower than the values reported by
Eddy et al. (41). The inclusion of 1,3-dini-
tropyrene in HepG2 resulted in an increase

of mutations over the background, yet did
not result in a dose-dependent increase in
the mutation frequency. The inclusion of
up to 17 jiM 1,6- or 1,8-dinitropyrene did
not result in a dose-dependent increase in
mutations.

Another method for detecting geno-
toxic damage to the HepG2 cells is by
monitoring the repair of DNA adducts
(unscheduled DNA synthesis). The results
of incubation of 1-nitropyrene and the
dinitropyrenes and determination of the
UDS is shown in Table 2. The presence of
4 pM 1-nitropyrene resulted in a 52%
increase in UDS. As with the mutation
results, there was not a dose-dependent
increase in UDS with 1,3-dinitropyrene,
although UDS was increased approxi-
mately 16% above the background values.
Neither 1,6- or 1,8-dinitropyrene induced
UDS above the background values. These
results suggest that the highly mutagenic
and carcinogenic 1,6- and 1,8-dinitropy-

Table 2. Induction of unscheduled DNA synthesis by
1-nitropyrene and dinitropyrenes in HepG2 cells.

Unscheduled DNA synthesis,
Chemical pM dpm per pg DNA

DMS0-hydroxyurea 60,189
DMS0 2,879
1-nitropyrene 4 4,381
1,3-dinitropyrene 1.7 3,699
1,3-dinitropyrene 3.4 3,274
1,3-dinitropyrene 6.8 3,102
1,6-dinitropyrene 1.7 3,927
1,6-dinitropyrene 3.4 2,083
1,6-dinitropyrene 6.8 1,852
1,8-dinitropyrene 1.7 2,108
1,8-dinitropyrene 3.4 2,248
1,8-dinitropyrene 6.8 2,372

rene are not metabolically activated in
HepG2 cells, as evidenced by the lack of
genetic damage.

In order to determine if the lack of
genotoxicity of 1,8-dinitropyrene resulted
from a lack of metabolic activation, the
nitroreduction of 1-nitropyrene and 1,8-
dinitropyrene were contrasted. Both of
these compounds have been shown to be
metabolically activated by nitroreduction
to arylhydroxylamines that bind to DNA.
In prokaryotic cells, the metabolic activa-
tion of 1,6- and 1,8-dinitropyrene addi-
tionally requires the esterification of the
arylhydroxylamine to an acyloxy ester via
acyltransferase enzymes (52,53), while this
step is not required for 1-nitropyrene or
1,3-dinitropyrene. Figure 3 shows the
results of incubation of 4 1iM [3H1-
nitropyrene and [3HI1 ,8-dinitropyrene
with HepG2. The metabolism of both
compounds to nitroreduced metabolites
plateaued at approximately 6 to 12 hours.
While the extent of metabolism of 1-
nitropyrene was approximately 4-fold
higher than of [3H] 1,8-dinitropyrene, the
rates of metabolism between 4 and 6 hours
were approximately the same. This dimin-
ished nitroreduction of 1,8-dinitropyrene
cannot account for the lack of induction of
mutations at the hgprt locus and induction
of UDS by this compound. In S.
typhimurium TA98, a 4-fold loss in nitrore-
duction for 1,8-dinitropyrene would still
result in mutation rates approximately 250-
to 500-fold higher than 1-nitropyrene. The
only case where a reduction of 1,8-dinitro-
pyrene nitroreduction would result in
mutagenicities either equal to or less than
[3H] 1-nitropyrene would be in strains
missing the arylhydroaxylamine O-esterifi-
case, such as TA98/1,8DNP6 and
TA100/Tn5-1012. Therefore, the lack of
mutagenicity of 1,6- and 1,8-dinitropyrene
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Figure 3. Nitroreduction of 4 pM [3H]1-nitropyrene (O)
and [3H]1,8-dinitropyrene (U) in HepG2 cells.The
metabolites were extracted and analyzed as described
in "Materials and Methods." The results are from
duplicate analyses from two experiments.
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in HepG2 cannot only be attributed to the

loss of nitroreduction, but additionally
results from a lack of arylhydroxylamine 0-

esterificase activity.
One possible explanation for the weak

tumorigenicity of 1 -nitropyrene and high

tumorigenicity of 1,6- and 1 ,8-dinitropy-
rene could be a lack of activation of 1-

nitropyrene in vivo and a predominance of

activation for 1,6- and 1 ,8-dinitropyrene in

vivo. The metabolism of 1 -nitropyrene in

vitro with microsomes and in vivo is domi-

nated by cytochrome P450-mediated C-

oxidation to phenols or dihydrodiols.
However, no cytochrome P450-mediated

C-oxidation has been reported for 1,6- or

1 ,8-dinitropyrene, leaving nitroreduction

as the sole pathway for metabolism and

removal of the compound. This would

obligate cells to metabolize the dinitropy-
renes through a pathway that results in

mutagenicity in cells in vitro.

A method for testing the hypothesis
that nitroreduction of I1-nitropyrene is

responsible for the mutagenesis of 1-

nitropyrene in the HepG2, and that

cytochrome P450-mediated C-oxidation is

not an activation pathway, would be to

vary the ratio of cytochrome P450-mediated

C-oxidation to nitroreduction in HepG2,
and then determine the effect on DNA

adduction. In Table 3 we show the results

of the administration of 2.5 pM 3-methyl-
cholanthrene on the metabolism of 1-

nitropyrene in HepG2 cells. The inclusion

of 3-methylcholanthrene induced the

cytochrome P450-mediated C-oxidation of

1-nitropyrene by 2.2-fold, and reduced the

nitroreduction to 1-aminopyrene by 81%.

There was a variability in the metabolism

of 1 -nitropyrene between the experiments,
as indicated by the standard deviations.

The nature of this variability is not under-

stood, yet there was a consistency in the

ratio of C-oxidation/nitroreduction

between experiments. An increase in the

formation of 1-nitropyren-6-ol and 1-

nitropyren-8-ol over the formation of 1-

nitropyren-3-ol (6+8/3-ols) is a hallmark of

cytochromes P4501A (28). In the HepG2

cells, treatment with 3-methylcholanthrene
resulted in an increase of the 6+8/3-ol ratio

from 1.5 to 6.8, suggesting the induction

of the cytochromes P4501A.

To determine the effect of the altered

ratio of C-oxidation/nitroreduction on the

DNA adduct formation, control and 3-

methylcholanthrene-treated HepG2 cells

were exposed to 10 pM 1 -nitropyrene. The

DNA was isolated, hydrolyzed, and ana-

lyzed for the presence of DNA adducts by
the 32P-postlabeling method (Figure 4).

When S. typhimurium TA98 is exposed in

suspension to 1-nitropyrene, the C8-

guanyl adduct of 1-nitropyrene (dG-C8-

AP), C8-guanyl adduct of either 1,6- or

1,8-dinitropyrene (dG-C8-ANP), and a

polar adduct presumed to be the ring-

opened product of dG-C8-AP ("a") are

detected (Figure 4A). While no adducts

appear in HepG2 in the absence of added

compounds (Figure 4B), the inclusion of

10 pM 1 -nitropyrene induced two adducts

(Figure 4C). One of the adducts comi-

grated with dG-C8-AP and the other with

"ca" of panel A. Since we used 1-nitropy-
renes of identical purity (-99.5%), the

lack of DNA adducts in HepG2 from the

dinitropyrenes that contaminate 1 -nitropy-

rene, and the presence of these adducts in

the S. typhimurium TA98, argue in favor of

our conclusion that HepG2 lack the aryl-

hydroxylamine O-esterificase necessary for

the activation of the dinitropyrenes.
Pretreatment of HepG2 cells with 3-

methylcholanthrene and exposure to 1-

nitropyrene resulted in the formation of

less dG-C8-AP, and the formation of 3-

Table 3. The effect of pretreatment of HepG2 with 3-methylcholanthrene on metabolism of 10 pM 1-nitropyrene
(pmole/24 hr).
Quantified 1-nitropyrene metabolites Untreated HepG2 3-Methylcholanthrene-pretreated HepG2
1-Nitropyrene-4,5 and 9,10-dihydrodiols 15.6 ± 6.4 10.8 ± 10.1
1-Nitropyren-6- and 8-ol 74.5 ± 25.1 299.1 ± 121.4
1-Nitropyren-3-ol 72.6 ± 50.4 52.4 ± 36.5
Total C-oxidationa 163.8 ± 44.8 364.2 ± 152.1
1-Aminopyrene 76.8 ±39.0 14.3 ±18.3
(C-Oxidation/nitroreduction) 2.8 ± 1.9 50.4 ± 46.1

(6 + 8-ol/3-oI)b ~1.5 ±0.8 6.8 ±2.5

aThe total C-oxidation was calculated as the sum of dihydrodiol and phenol metabolites produced. bThe ratio of
the formation of 1-nitropyren-6-ol plus 1-nitropyren-8-ol divided by 1-nitropyren-3-ol formation. The results are the
sum of five experiments and are presented as the mean ± SD.

Figure 4. 32P-Postlabeling of DNA isolated from (A) Salmonella typhi'murium TA98 treated with 20 pM [3H]1-

nitropyrene in suspension; (B) HepG2 cells; (C) HepG2 cells exposed for 24 hr to 10 PM [3Hll-nitropyrene; and (D)

HepG2 cells preexposed for 24 hr to 2.5 pM 3-methylcholanthrene followed by exposure for 24 hr to 10 PM 13H11

nitropyrene. The adducts are identified as: (1), C8-guanyl adduct of 1-nitropyrene [dG-C8-AP; N-(2'-deoxyguanosin-

8-yl)-l-aminopyrene]; (2), C8-guanyl adduct of 1,6-dinitropyrene or 1,8-dinitropyrene [N-(2'-deoxyguanosin-8-
yl)-l -amino-(6 or 8)-nitropyrenel; (a), adduct of undetermined identity that has chromatographic characteristics con-

sistent with the ring-opened product of dG-C8-AP; (3), uncharacterized DNA adducts from 3-methylcholanthrene;-

(4), location of DNA adduct resulting from the incubation of 1-nitropyrene-4,5-epoxide with calf thymus DNA; (o),

origin.

~~~~~~~~~~~~~~~~~~~~~~~~Environmental Health Perspectives

4

198



HEPG2 ACTIVATION OF 1-NITROPYRENEAND 1,6-DINITROPYRENE

methylcholanthrene DNA adducts (Figure
4D). There was a lack of formation of
other DNA adducts that could be attribut-
able to 1-nitropyrene K-region epoxides.
The DNA from the HepG2 treated with 1-
nitropyrene contained 18.7 ± 7.0 fmoles/pg
DNA of dG-C8-AP, while the cells pre-
treated with 3-methylcholanthrene then
treated with 1-nitropyrene had 4.8 ± 1.7
fmoles dG-C8-AP per pg DNA.

These results demonstrate that when
the ratio of cytochrome P450-mediated C-
oxidation of 1-nitropyrene is increased over
the nitroreduction pathway, there is a
decrease in the formation of dG-C8-AP
DNA adducts, which arise from the
nitroreduction pathway, and that this
decrease in adducts is not associated with
the formation of DNA adducts arising
from cytochrome P450-mediated C-oxida-
tion, e.g., the 4,5-epoxide DNA adduct.

Nitroreduction is not a favored pathway in
vivo in tissues where cytochrome P450
concentrations are significantly higher than
in HepG2 cells. Additionally, the epoxides
of 1-nitropyrene are quickly hydrolyzed by
epoxide hydrolase in human liver tissue
(54). These results, along with the weak
tumorigenic response of rodents to 1-
nitropyrene, indicate that 1-nitropyrene
may not pose a significant tumorigenic risk
to the human population.
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